Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniques
نویسندگان
چکیده
Decomposition techniques are used to speed up training support vector machines but for linear programming support vector machines (LP-SVMs) direct implementation of decomposition techniques leads to infinite loops. To solve this problem and to further speed up training, in this paper, we propose an improved decomposition techniques for training LP-SVMs. If an infinite loop is detected, we include in the next working set all the data in the working sets that form the infinite loop. To further accelerate training, we improve a working set selection strategy: at each iteration step, we check the number of violations of complementarity conditions and constraints. If the number of violations increases, we conclude that the important data are removed from the working set and restore the data into the working set. The computer experiments demonstrate that training by the proposed decomposition technique with improved working set selection is drastically faster than that without using the decomposition technique. Furthermore, it is always faster than that without improving the working set selection for all the cases tested.
منابع مشابه
Efficient Large Scale Linear Programming Support Vector Machines
This paper presents a decomposition method for efficiently constructing 1-norm Support Vector Machines (SVMs). The decomposition algorithm introduced in this paper possesses many desirable properties. For example, it is provably convergent, scales well to large datasets, is easy to implement, and can be extended to handle support vector regression and other SVM variants. We demonstrate the effi...
متن کاملWorking Set Selection Using Second Order Information for Training Support Vector Machines
Working set selection is an important step in decomposition methods for training support vector machines (SVMs). This paper develops a new technique for working set selection in SMO-type decomposition methods. It uses second order information to achieve fast convergence. Theoretical properties such as linear convergence are established. Experiments demonstrate that the proposed method is faster...
متن کاملParallel Decomposition Approaches for Training Support Vector Machines
We consider parallel decomposition techniques for solving the large quadratic programming (QP) problems arising in training support vector machines. A recent technique is improved by introducing an efficient solver for the inner QP subproblems and a preprocessing step useful to hot start the decomposition strategy. The effectiveness of the proposed improvements is evaluated by solving large-sca...
متن کاملSequential minimal optimization: A fast Algorithm for Training Support Vector machines
This paper proposes a new algorithm for training support vector machines: Sequential Minimal Optimization, or SMO. Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest possible QP problems. These small QP problems are solved analytically, which avoids using a time-consu...
متن کاملFast Training of Support Vector Machines using Sequential Minimal Optimization
This chapter describes a new algorithm for training Support Vector Machines: Sequential Minimal Optimization, or SMO. Training a Support Vector Machine (SVM) requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest possible QP problems. These small QP problems are solved analytically, which avoids using a t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006